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Text S1: Additional quality control 

For the vast barren and uninhabited land areas in Western China, e.g., southern Xinjiang and 

western Tibet, surface NO2 concentrations are usually relatively low, especially at night and early 

morning. Considering that there are too few samples needed for the Deep Learning in western 

China, and a small number of potentially problematic samples could have a large impact on the 

model training, we defined a more objective approach to filter them via checking the diurnal 

variations in ground measurements: 1) First, we define these suburb clean sites in western China 

with little human activities using land use classification and population data; 2) for each day and 

each station, we count the percentage of hourly observations exceeding the daily (24-h average) 

NO2 concentration limit (i.e., 40 μg/m3); if the percentage is larger than 50%, the data from that site 

and that whole individual day is filtered out as outliers because such case is likely affected by 

instrument malfunction due to harsh natural conditions in western China. As the surface NO2 

concentrations are commonly lower than 40 μg/m3 and the duration of diurnal NO2 peak is typically 

shorter than 4 hours a day (when the anthropogenic activity is high and the planetary boundary layer 

is low),1-3 our approach can effectively remove such potential outliers (e.g., for 28 Jan 2019). 

 

Text S2: Tropospheric NO2 gap filling 

There are two iterations for tropospheric NO2 gap filling using the SWMET model: 

1) For the 1st iteration, available daily OMI tropospheric NO2 retrievals (𝑂𝑀𝐼்ேைమ
) are regarded as 

the observations, and the missing values are predicted by regressing the SWMET model with 

spatially continuous auxiliary variables, including modeled tropospheric NO2 (𝑀𝑜𝑑𝑒𝑙்ேைమ
), six 

meteorological variables (including boundary layer height (BLH), relative humidity (RH), 

surface pressure (SP), temperature (TEM), 10-m u-component (WU) and v-component of winds 

(WV)), surface-related (i.e., Normalized Difference Vegetation Index (NDVI), and digital 

elevation model (DEM)) variables, and spatiotemporal terms (Ps and Pt): 

𝑂𝑀𝐼்ேைమ
~ 𝑓ௌௐொ்ሺ𝑀𝑜𝑑𝑒𝑙்ேைమ

, 𝐵𝐿𝐻, 𝑅𝐻, 𝑆𝑃, 𝑇𝐸𝑀, 𝑊𝑈, 𝑊𝑉, 𝐷𝐸𝑀, 𝑁𝐷𝑉𝐼, 𝑃௦, 𝑃௧ሻ (1) 

 

2) For 2nd iteration, available daily TROPOMI tropospheric NO2 retrievals (𝑇𝑅𝑂்ேை2
) as the 

observations, along with the OMI tropospheric NO2 predicted in the 1st iteration, modeled 



S4 
 

tropospheric NO2 (𝑀𝑜𝑑𝑒𝑙்ேைమ
), and the same meteorological (i.e., BLH, RH, SP, TEM, WU, 

and WV), and spatiotemporal terms (Ps and Pt), are used to construct the second gap-filling 

model: 

𝑇𝑅𝑂்ேைమ
~ 𝑓ௌௐொ்ሺ𝑂𝑀𝐼்ேைమ

, 𝑀𝑜𝑑𝑒𝑙்ேைమ
, 𝐵𝐿𝐻, 𝑅𝐻, 𝑆𝑃, 𝑇𝐸𝑀, 𝑊𝑈, 𝑊𝑉, 𝐷𝐸𝑀, 𝑁𝐷𝑉𝐼, 𝑃௦, 𝑃௧ሻ (2) 

 

Text S3: Ground-level NO2 estimation 

There are a total of twenty-one features inputs to the spatiotemporally weighted deep forest 

(SWDF) model including the ground-based NO2 measurements (𝑆𝑢𝑟ேைమ
), full-coverage TROPOMI 

(𝐹𝑇𝑅𝑂்ேைమ
) and OMI (𝐹𝑂𝑀𝐼்ேைమ

) tropospheric NO2 data predicted in Test S1, modeled 

tropospheric (𝑀𝑜𝑑𝑒𝑙்ேைమ
) and surface (𝑀𝑜𝑑𝑒𝑙ௌேைమ

) NO2 data, NOx emission, all eight 

meteorological (𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦) fields (i.e., BLH, evaporation (ET), precipitation (PRE), RH, SP, 

TEM, WU and WV), DEM, Land Use Type (LUC), NDVI, nighttime lights (NTL), and population 

distribution (POD), and spatiotemporal terms (Ps and Pt), can be expressed as: 

 

𝑆𝑢𝑟ேைమ
~ 𝑓ௌௐ஽ிሺ𝐹𝑇𝑅𝑂்ேைమ

, 𝐹𝑂𝑀𝐼்ேைమ
, 𝑀𝑜𝑑𝑒𝑙்ேைమ

, 𝑀𝑜𝑑𝑒𝑙ௌேைమ
, 𝑁𝑂௫, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦, 

𝐷𝐸𝑀, 𝐿𝑈𝐶, 𝑁𝐷𝑉𝐼, 𝑁𝑇𝐿, 𝑃𝑂𝐷, 𝑃௦, 𝑃௧ሻ,  (3) 

 

There are three main steps during the model building: 1) first uses multi-Grained Scanning to 

extract features of different granularity of data; 2) then they are used as inputs to the Cascade 

Forest, in which each layer contains multiple forests constructed by random forest (RF) and 

completely-random trees (CRT); 3) last, the final output is combined from all layers’ results using 

the Light Gradient Boosting Machine (LightGBM) model.  
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Figure S1. Spatial coverage of available daily (a) OMI and (b) TROPOMI tropospheric NO2 
retrievals across China. 
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Figure S2. Same with Figure 2 but with the out-of-city cross-validation approach. 
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Figure S3. Sorted annual mean surface NO2 concentrations (μg/m3) at (a) top 30 cities (the red 
font indicates the provincial capital city of China), and their relationships with (b) the logarithm 

of nighttime lights (red) and number of population (blue) at all cities in mainland China. 
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Figure S4. Urban-rural differences in annual mean surface NO2 concentrations (μg/m3) at (a) 
top 30 and (b) all cities in mainland China, where the red font indicates the provincial capital 

city of China. 
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Figure S5. Seasonal mean ground-level NO2 concentrations (µg/m3) from 2019 to 2020 across 

China: (a) Spring, (b) Summer, (c) Autumn, and (d) Winter. 
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Figure S6. Temporal variations of our model-derived (background shading) and ground-

measured (colored dots) daily ground-level NO2 concentrations (µg/m3) covering the Spring 
Festival (i.e., February 5–11) from January 26 to February 23 in 2019 across China, where the 

day of the Chinese Lunar New Year (i.e., February 5, 2019) is marked in red font. 
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Figure S7. Temporal variations of our model-derived (background shading) and ground-
measured (colored dots) daily ground-level NO2 concentrations (µg/m3) coving the National 

Day (i.e., October 1–7) from September 23 to October 15 in 2019 across China. 
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Figure S8. Comparison of average ground-based surface NO2 measurements (µg/m3) before, 

during, and after the (a) Spring Festival and (b) National Day holidays, and (c) during weekdays 
and weekends in China and four typical regions. 
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Figure S9. Comparison of average ground-based Tropospheric NO2 column (1015 molec/cm2) 
before, during, and after the (a) Spring Festival and (b) National Day holidays, and (c) during 

weekdays and weekends in China and four typical regions. 
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Figure S10. Comparison of time series of daily (a) surface NO2 measurements (µg/m3) and (b) 
TROPOMI tropospheric NO2 columns (1015 molec/cm2) in 2019 (red) and 2020 (blue) before 

and after the Lunar New Year in China. The grey circles highlight when surface-measured NO2 

concentrations and tropospheric NO2 columns from 2020 reached 2019 historical levels. Dashed 
blue lines show the linear trends during the period experiencing the impact of the lockdown in 

2020. The slope (k) is given, and the three asterisks indicate p < 0.001. 
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Figure S11. Spatial distributions of the percentage (%) of days exceeding the ambient NO2 

standard (i.e., daily NO2 concentration = 80 μg/m3) in 2019 and 2020 in China. 
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Figure S12. Radar plot of feature importance for ground-level NO2 modeling. 
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Table S1. Summary of the data sources used in this study. 

Variable Description Unit 
Spatial 

Resolution 

Temporal 

Resolution 
Data Source 

NO2 Surface NO2 μg/m3 Point Hourly MEE 

NO2 tropospheric NO2 molec/cm2 1 km Daily USTC TROPOMI

tropospheric NO2 molec/cm2 0.25°×0.25° Daily OMI 

tropospheric NO2 molec/cm2 0.75°×0.75° Daily CAMS 

Surface NO2 μg/m3    

NOx Nitrogen oxides Mg/grid 0.1°×0.1° Monthly CAMS 

LUC Land cover type 

- 0.05°×0.05° 

Annual MCD12 

NDVI Normalized difference 

vegetation index 

Monthly MOD13 

DEM Surface elevation m 90 m - SRTM  

NTL Nighttime lights nW/cm2/sr 500 m Monthly VIIRS 

POP Population density - 1 km Annual LandScanTM 

ET evaporation mm 0.1°×0.1° Hourly ERA5 

PRE Precipitation mm    

SP Surface pressure hPa    

TEM 2-m air temperature K    

WU 10-m u-component m/s    

WV 10-m v-component m/s    

BLH Boundary layer height m 0.25°×0.25°   

RH Relative humidity %    

MEE: Chinese Ministry of Environment and Ecology; USTC: University of Science and Technology of China. 
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Table S2. Out-of-sample (overall accuracy) and out-of-city (spatial prediction ability) cross-
validation results of daily NO2 estimates (µg/m3) and predictions (µg/m3) in the Beijing-Tianjin-

Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) from 2019 to 
2020 in China. 

Region 
Sample size Overall accuracy Spatial prediction ability 

N R2 RMSE MAE R2 RMSE MAE 

BTH 56,797 0.94 5.23 3.80 0.74 11.09 8.57 

YRD 16,607 0.92 5.43 3.92 0.70 10.43 7.90 

PRD 40,403 0.93 5.23 3.71 0.77 9.52 7.17 
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Table S3. Validation and comparison of tropospheric NO2-gap filling methods in China 

Gap-fill model 

Relationship with 
Literature 

Tropospheric NO2 Ground NO2 

CV-R2 CV-RMSE R  

IDW & Time linear interpolation – – 0.59 Wu et al., 20214 

Exemplar-based algorithm 0.71–0.80 3.19–6.89 – Wang et al., 20215 

Full residual deep networks  0.91–0.99 0.07–6.21 – Li & Wu, 20216 

SWMET 0.89–0.96 0.46–1.51 0.62 This study 

IDW: inverse distance weighting 
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Table S4. Comparison of model performances with previous NO2 studies in China 

Model 
Spatial 

resolution 

Cross validation Main input 

predictor 

Gap 

filling 

Study 

region 
Literature 

R2 RMSE 

BME 0.25° 0.78 11.21 OMI NO2 No BTH Jiang & Christakos, 20187 

RF-SK 0.25° 0.62 13.3 OMI NO2 No China Zhan et al., 20188 

ERT 0.25° 0.72 9.20 POMINO NO2 No ECH Qin et al., 20209 

 0.25° 0.70 9.42 OMI NO2 No ECH  

RF-K 0.25° 0.64 11.3 OMI NO2 No China Dou et al., 202110 

XGBoost 0.125° 0.67 6.40 TROPOMI NO2 No China Chi et al., 202211 

LUR 0.125° 0.78 - OMI NO2 No China Xu et al., 201912 

UK&SBM 0.125° 0.85 7.87 OMI NO2 No China Chen et al., 201913 

GTWR 0.1° 0.60 - OMI NO2 No ECH Qin et al., 201714 

XGBoost 0.05° 0.83 7.58 TROPOMI NO2 No China Liu, 202115 

LightGBM 0.05° 0.83 6.62 TROPOMI NO2 Yes China Wang et al., 20215 

GTWR-SK 0.025° 0.84 6.70 TROPOMI NO2 Yes China Wu et al., 20214 

FSDN 0.01° 0.82 8.80 OMI NO2 Yes China Li & Wu, 20216 

SWDF 0.01° 0.93 4.89 TROPOMI NO2 Yes China This study* 

BME: Bayesian maximum entropy; ERT: extremely randomized trees; FSDN: full residual deep networks; GTWR: 

geographically and temporally weighted regression; GTWR-SK: GTWR with spatiotemporal kriging; RF-K; 

LightGBM: Light Gradient Boosting Machine; LUR: land use regression; MEM: mixed effect model; RF-K: random 

forest integrated K-means; RF-SK: random forest integrated spatiotemporal kriging; SWDF: spatiotemporally weighted 

deep forest; UK&SBM: universal kriging & satellite-based model; XGBoost: extreme gradient boosting. 
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